| EWS AISI410 | EWS A2

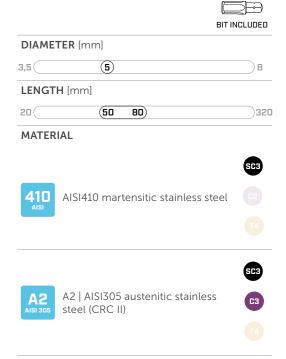
CE

CONVEX HEAD SCREW

AESTHETIC PERFORMANCE AND ROBUSTNESS

Countersunk teardrop shaped head with curved surface for a pleasant look and firm grip with the bit. The increased shank diameter with high torsional strength for a strong, safe screwing even in high density woods.

EWS AISI410


The martensitic stainless steel version offers the highest mechanical performance. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.).

EWS A2 | AISI305

The austenitic A2 stainless steel version offers higher corrosion resistance. Suitable for outdoor applications up to 1 km from the sea and on most of T4 class acid woods.

FIELDS OF USE

Outdoor use.

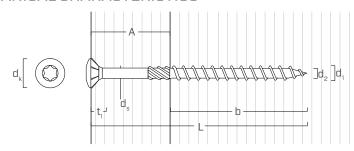
WPC boards (with pre-drill).

EWS AISI410: wooden boards with density of < 880 kg/m³ (without pre-drill).

EWS A2 | AISI305: wooden boards with density of $< 550 \text{ kg/m}^3$ (without pre-drill) and $< 880 \text{ kg/m}^3$ (with pre-drill).

CODES AND DIMENSIONS

EWS AISI410


EWS A2 | AISI305

	d_1	CODE	L	b	Α	pcs
	[mm]		[mm]	[mm]	[mm]	
		EWS550	50	30	20	200
	5	EWS560	60	36	24	200
	TX 25	EWS570	70	42	28	100
		EWS580	80	48	32	100

d_1	CODE	L	b	Α	pcs
[mm]		[mm]	[mm]	[mm]	
_	EWSA2550	50	30	20	200
5 TX 25	EWSA2560	60	36	24	200
17.20	EWSA2570	70	42	28	100

■ GEOMETRY AND MECHANICAL CHARACTERISTICS

GEOMETRY

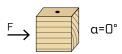
			EWS AISI410	EWS A2 AISI305
Nominal diameter	d_1	[mm]	5,3	5,3
Head diameter	d_K	[mm]	8,00	8,00
Thread diameter	d_2	[mm]	3,90	3,90
Shank diameter	d_S	[mm]	4,10	4,10
Head thickness	t_1	[mm]	3,65	3,65
Pre-drilling hole diameter ⁽¹⁾	d_V	[mm]	3,5	3,5

⁽¹⁾ For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS

			EWS AISI410	EWS A2 AISI305
Nominal diameter	d_1	[mm]	5,3	5,3
Tensile strength	$f_{tens,k}$	[kN]	13,7	7,3
Yield moment	$M_{y,k}$	[Nm]	14,3	9,7
Withdrawal resistance parameter	$f_{ax,k}$	[N/mm ²]	16,5	16,6
Associated density	ρ_{a}	[kg/m ³]	350	350
Head-pull-through parameter	$f_{head,k}$	[N/mm ²]	21,1	21,4
Associated density	ρ_{a}	[kg/m ³]	350	350

WITHOUT PRE-DRILLED HOLE


EWS AISI410 can be used, without pre-drill, in woods having a maximum density of 880 kg/m³. EWS A2 | AISI305 can be used, without pre-drill, in woods having a maximum density of 550 kg/m³.

MINIMUM DISTANCES FOR SHEAR LOADS

screws inserted WITHOUT pre-drilled hole

 $\rho_k \leq 420 \; kg/m^3$

d	[mm]		5
a ₁	[mm]	12 ⋅d	60
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	1 5⋅d	75
a _{3,c}	[mm]	10 ⋅d	50
a _{4,t}	[mm]	5·d	25
a _{4,c}	[mm]	5·d	25

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	5·d	25
$a_{3,t}$	[mm]	10·d	50
a _{3,c}	[mm]	10 ⋅d	50
$a_{4,t}$	[mm]	10·d	50
a _{4,c}	[mm]	5·d	25

d = screw diameter

screws inserted WITHOUT pre-drilled hole

 $420 \text{ kg/m}^3 < \rho_k \le 500 \text{ kg/m}^3$

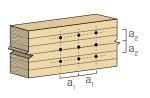
α=90°

d	[mm]		5
a ₁	[mm]	15 ⋅d	75
a ₂	[mm]	7·d	35
$a_{3,t}$	[mm]	20·d	100
a _{3,c}	[mm]	15·d	75
$a_{4,t}$	[mm]	7·d	35
a _{4,c}	[mm]	7·d	35

d	[mm]		5
a ₁	[mm]	7·d	35
a ₂	[mm]	7⋅d	35
$a_{3,t}$	[mm]	15·d	75
a _{3,c}	[mm]	1 5⋅d	75
$a_{4,t}$	[mm]	12 ⋅d	60
a _{4,c}	[mm]	7⋅d	35

d = screw diameter

screws inserted WITH pre-drilled hole



α=90°

d	[mm]		5
a ₁	[mm]	5·d	25
a ₂	[mm]	3·d	15
$a_{3,t}$	[mm]	12·d	60
a _{3,c}	[mm]	7⋅d	35
$a_{4,t}$	[mm]	3·d	15
a _{4,c}	[mm]	3·d	15

a_1 [mm] $4 \cdot d$ 20 a_2 [mm] $4 \cdot d$ 20 $a_{3,t}$ [mm] $7 \cdot d$ 35 $a_{3,c}$ [mm] $7 \cdot d$ 35 $a_{4,t}$ [mm] $7 \cdot d$ 35 $a_{4,c}$ [mm] $3 \cdot d$ 15	d	[mm]		5
a _{3,t} [mm] 7.d 35 a _{3,c} [mm] 7.d 35 a _{4,t} [mm] 7.d 35	a ₁	[mm]	4·d	20
a _{3,c} [mm] 7.d 35 a _{4,t} [mm] 7.d 35	a ₂	[mm]	4·d	20
a _{4,t} [mm] 7 · d 35	$a_{3,t}$	[mm]	7⋅d	35
1,0	a _{3,c}	[mm]	7⋅d	35
a _{4,c} [mm] 3 · d 15	$a_{4,t}$	[mm]	7⋅d	35
	a _{4,c}	[mm]	3·d	15


d = screw diameter

stressed end $-90^{\circ} < \alpha < 90^{\circ}$

unloaded end $90^{\circ} < \alpha < 270^{\circ}$

stressed edge $0^{\circ} < \alpha < 180^{\circ}$

unload edge 180° < α < 360°

NOTES

- The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter.
- The minimum spacing for all panel-to-timber connections ($\mathbf{a_1}$, $\mathbf{a_2}$) can be multiplied by a coefficient of 0,85.

 $[\]alpha$ = load-to-grain angle

 $[\]alpha$ = load-to-grain angle

 $[\]alpha$ = load-to-grain angle

STRUCTURAL VALUES

	EWS AISI410			SHE	EAR	TENSION		
				timber-to-timber without pre-drilled hole	timber-to-timber with pre-drilling hole	thread withdrawal	head pull-through	
			A					
d ₁	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	50	30	20	1,38	1,84	2,86	1,56	
5	60	36	24	1,58	2,09	3,44	1,56	
Э	70	42	28	1,77	2,21	4,01	1,56	
	80	48	32	1,85	2,34	4,58	1,56	

E	EWS A2 AISI305			SHE	EAR	TENSION		
				timber-to-timber without pre-drilled hole	timber-to-timber with pre-drilling hole	thread withdrawal	head pull-through	
d_1	L	b	Α	R _{V,k}	R _{V,k}	R _{ax,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	
	50	30	20	1,39	1,80	2,88	1,58	
5	60	36	24	1,55	1,92	3,46	1,58	
	70	42	28	1,64	2,06	4,03	1,58	

GENERAL PRINCIPLES

- Characteristic values according to EN 1995:2014.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

The coefficients $\gamma_{\mbox{\scriptsize M}}$ and $k_{\mbox{\scriptsize mod}}$ should be taken according to the current regulations used for the calculation.

- Mechanical strength values and screw geometry comply with CE marking according to EN 14592.
- Values were calculated considering the threaded part as being completely inserted into the wood.
- Dimensioning and verification of the timber elements must be carried out
- The screws must be positioned in accordance with the minimum distances.

NOTES

- The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
- The axial resistance to head pull-through was calculated using wood el-
- For the calculation process a timber characteristic density ρ_k = 420 $\mbox{kg/m}^3$ has been considered.